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SOME NONASYMFTOTIC EFFECTS ON THE 

SONIC BOOM OF LARGE AIRPLANES 

By F. Edward McLean 
Langley R e  search Center 

SUMMARY 

The study of a number of equivalent bodies represent ing a l a rge  a i rp lane  
a t  c r i t i c a l  t ransonic  f l i g h t  conditions ind ica tes  the  possible  i n a p p l i c a b i l i t y  
of t h e  asymptotic f a r - f i e l d  theory used i n  current  (scenic-boom analyses.. A t  
these  normal operating conditions the  pressure f i e l d  from a la rge  a i rp lane ,  
such as t h e  supersonic t r anspor t ,  tends t o  exhib i t  important nonasymptotic near- 
f i e l d  c h a r a c t e r i s t i c s  which must be calculated with t h e  use of general  theory. 
Since the  shape and magnitude of t h e  near-f ie ld  pressure s ignature  i s  dependent 
on a i rp lane  equivalent body shape, suppression of the  sonic boom through a 
design approach t o  a more idea l ized  near-f ie ld  shape i s  suggested. The r e s u l t s  
of t he  study ind ica te  t h a t  i f  ce r t a in  e f f ec t ive  area d i s t r i b u t i o n s  can be 
achieved by r e a l  a i rp lanes ,  sonic-boom overpressures much lower than those pre- 

&!z-fi - 

dic ted  by current  a s -pp to t i c  methods would be poss ib le .  

INTRODUCTION 

Sonic boom has besome a major problem i n  t h e  current na t iona l  program f o r  
t h e  development of a k-ommercial supersonic transPo&. Extensive supersonic 
ove r f l i gh t  of populated a reas  i s  envisioned fo r  t h e  t ranspor t  a i rplanes;  con- 
sequently, t h e  associated property damage and annoyance t o  the  population caused 
by the  sonic boom could lead t o  severe r e s t r i c t i o n s  i n  a i rp lane  design and oper- 
a t ion .  The e f f e c t  of these  r e s t r i c t i o n s  on t h e  f l i g h t  c h a r a c t e r i s t i c s  of t h e  
a i rp lane ,  p a r t i c u l a r l y  a t  c r i t i c a l  transonic acce lera t ion  conditions,  m i g h t  wel l  
be the  p i v o t a l  i s sue  which decides t h e  economic f e a s i b i l i t y  of the  supersonic 
t r anspor t .  

The se r ious  nature  of t h e  sonic-boom implications i n  supersonic a i rp lane  
development has  l e d  t o  considerable research e f f o r t  t o  develop ana ly t i c  methods 
which accura te ly  descr ibe the  r e l a t ionsh ip  between the  a i rp lane  and i t s  sonic- 
boom c h a r a c t e r i s t i c s .  I n  the  sonic-boom analysis  methods which have evolved 
from t h i s  research, some r e s u l t s  of which are summarized i n  reference 1, the  
a i rp l ane  a t  var ious l i f t i n g  conditions has been conveniently represented by 
equivalent  bodies of revolut ion.  The sonic-boom c h a r a c t e r i s t i c s  of these  equiv 
a l e n t  bodies of revolut ion have then been determined by use of t he  asymptotic 
f a r - f i e l d  shock r e l a t ionsh ips  derived by Whitham ( r e f .  2) .  



The asymptotic f a r - f i e l d  re la t ionship ,  which i s  a spec ia l  solut ion of nixe 
general  shock equations derived by Whitham, i s  a t h e o r e t i c a l  representat ion of 
t h e  pressure disturbances generated by a body of revolution a t  some loca t ion  
far  f r o m t h e  body. Sonic-boom data  obtained during the  over f l igh ts  of current  
supersonic a i rp lanes  a t  normal operating a l t i t u d e s  have correlated reasonably 
wel l  w i t h  these  theo re t i ca l ly  derived f a r - f i e l d  so lu t ions  ( r e f .  1). However, 
i n  sonic-boom wind-tunnel experiments it has been d i f f i c u l t  t o  simulate f a r -  
f i e l d  conditions. Even with extremely small models, t he  N-wave pressure signa- 
t u r e  which character izes  the  far  f i e l d  i s  general ly  not f u l l y  developed i n  the  
dis tances  permitted from the  model t o  t h e  f l o o r  of t he  wind tunnel  ( r e f .  1). 
I n  an attempt t o  overcome t h i s  d i f f i c u l t y ,  consideration was given t o  t h e  
app l i cab i l i t y  of t h e  general  shock re la t ionships  of reference 2 i n  t h e  obvious 
near-field confines of the wind tunnel .  The premise was t h a t  i f  general  theory 
could predict  t h e  pressures  near an a i rp lane  model o r  i t s  representat ive equiv- 
a l e n t  body then these pressures  could be extrapolated t o  t h e  proper f a r - f i e l d  
condition with confidence. If the  f e a s i b i l i t y  of t h i s  extrapolat ion could be 
shown, it would be possible  t o  use l a rge r  wind-tunnel models with a b e t t e r  rep- 
resentat ion of t he  design f ea tu res  of t h e  a i rp lane .  

During the  ea r ly  phases of t h i s  invest igat ion,  an in t e re s t ing  and perhaps 
more important p o s s i b i l i t y  was indicated by t h e  ana lys i s .  This p o s s i b i l i t y  was 
t h a t ,  a t  some c r i t i c a l  f l i g h t  conditions,  t he  pressure f i e l d  of a l a rge  a i r -  
plane, such as the supersonic t ranspor t ,  would reach a f a r - f i e l d  va r i a t ion  only 
a t  dis tances  w e l l  beyond normal operat ional  a l t i t u d e s .  
t o t i c  conditions t h e  general  o r  near-f ie ld  solut ion of t h e  theory ind ica tes  
lower l eve l s  of sonic-boom overpressures than a r e  indicated by the  cur ren t ly  
accepted f a r - f i e ld  solut ion.  Furthermore, since t h e  shape of t he  pressure s ig-  
nature under nonasymptotic conditions i s  s t i l l  influenced by t h e  shape of t he  
a i rp l ane  equivalent body, t he  p o s s i b i l i t y  of f u r t h e r  sonic-boom suppression 
through airplane design modifications was suggested. 
invest igat ion i s  t o  explore some of these  nonasymptotic so lu t ions  of t h e  sonic- 
boom theory f o r  la rge  a i rp lanes .  

Under these  nonasymp- 

The purpose of t he  present 

The general theory of reference 2 i s  applied herein t o  determine t h e  bow- 
shock pressure-rise cha rac t e r i s t i c s  of severa l  ana ly t i c  bodies of revolution. 
Par t icu lar  emphasis i s  given t o  t h e  e f f e c t  of body shape on the  dis tance from 
t h e  body a t  which f a r - f i e l d  conditions are e f f ec t ive ly  a t t a ined  and on t h e  
manner i n  which t h e  bow-shock pressure rise approaches the  asymptotic var ia t ion .  
Test  models of several  equivalent bodies were designed t o  represent t he  combined 
l i f t  and base-area requirements of a t y p i c a l  450 000-pound supersonic t ranspor t  
a t  c r i t i c a l  t ransonic  f l i g h t  conditions (Mach number 1 .414) .  Pressure signa- 
t u r e s  measured a t  a Mach number of 1 .414 i n  the  near f i e l d  of t h e  t e s t  models 
a re  compared with pressure s ignatures  calculated by the  general  theory of r e f -  
erence 2. The degree t o  which these  t h e o r e t i c a l  and experimental nonasymptotic 
near-f ie ld  pressures approximate t h e  asymptotic values i s  indicated.  F ina l ly  
the  nonasymptotic sonic-boom ground overpressures which would be an t ic ipa ted  
from several  representat ive t ranspor t  equivalent bodies are compared with corre- 
sponding asymptotic overpressures and with t h e  asymptotic lower bound of sonic- 
boom overpressures discussed i n  references 1 and 3 .  
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SYMBOIS 

I Ae,b 

cross-sect ional  a rea  of a i rp lane  o r  model 

nondimensionalized cross-sect ional  area,  A/22 

cross-sect ional  area a t  base of a i rplane o r  model 

nondimensionalized e f f ec t ive  cross-sect ional  area due t o  combination 
of volume and l i f t  e f f ec t s ,  A ( t )  + B ( t )  

nondimensionalized e f f ec t ive  cross-sect ional  a rea  a t  base of a i rp lane  
o r  model due t o  combination of base a rea  and l i f t  e f f ec t s ,  
- C L - + -  P S Ab 
2 2 2  2 2  

B equivalent cross-sect ional  area due t o  l i f t ,  - P sb; FL de 
2q 

B ( t )  nondimensionalized equivalent cross-sect ional  a r ea  due t o  l i f t ,  B/22 

CL l i f t  coe f f i c i en t  

l i f t i n g  force  per u n i t  length along longi tudina l  axis of a i rp lane  
o r  model 

FL 

F(-d e f f ec t ive  a rea  d i s t r i b u t i o n  function, - 

h a i rp lane  fl ight a l t i t u d e  o r  perpendicular d i s tance  from model t o  
measuring probe 

I(d e f fec t ive  area d i s t r i b u t i o n  in t eg ra l ,  k‘ F(7)dq 

r e f l e c t i o n  f a c t o r  K r  

2 

M Mach number 

a i rp l ane  o r  model reference length 

P reference pressure f o r  a uniform atmosphere (free-stream s t a t i c  
pressure f o r  wind-tunnel t e s t s )  
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Pa atmospheric pressure a t  a i rp lane  a l t i t u d e  

atmospheric pressure a t  ground l e v e l  pg 

AP incremental pressure due t o  flow f i e l d  of a i rp lane  o r  model 

9 dynamic pre s sure 

S wing planform area 

t nondimensionalized dis tance,  x / l  

w airplane weight 

X dis tance measured along longi tudina l  a x i s  from a i rp lane  nose or  
model nose 

- 
X longi tudinal  d i s tance  from a i rp lane  nose or model nose t o  point  on 

corrected cha rac t e r i s t i c  

Ax distance from point  i n  undisturbed flow ahead of shock t o  point  on 
pressure signature 

Y r a t i o  of spec i f i c  hea ts  (1 .4  f o r  a i r )  

rl dummy var iab le  of in tegra t ion  corresponding t o  T 

5 dummy var iab le  of in tegra t ion  corresponding t o  t 
x - ph 

1 
7 nondimensionalized l i n e a r  theory c h a r a c t e r i s t i c  var iab le ,  

TO value of T giving l a rges t  pos i t i ve  value of I(T) 

A prime i s  used t o  ind ica t e  a f i r s t  der iva t ive  and a double prime i s  used 
t o  indicate  a second der iva t ive  with respect  t o  indicated argument of t h e  
funct ion.  

THEORETICAL CONSIDERATIONS 

The theo re t i ca l  s tud ie s  of reference 2 have provided a means f o r  es t i -  
mating the pressures  a t  any point  i n  the  supersonic flow f i e l d  about an axi- 
symmetric body of revolut ion.  I n  t h e  adaptat ions of t h i s  method f o r  considera- 
t i o n  of the complex flow pa t t e rns  about an asymmetric a i rp lane  configuration a t  
l i f t i n g  conditions, t he  volume and l i f t  d i s t r i b u t i o n s  have been combined t o  
form a representative equivalent body of revolut ion ( refs .  1 and 4 ) .  
t i ve  area d i s t r ibu t ion  of t h e  assumed equivalent body of revolut ion i s  given by 

The ef fec-  
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Ae = A ( t )  + B(t)  (1) 
.' 

The term A ( t )  i n  equation (1) represents a d i s t r ibu t ion  along t h e  longi tudina l  
axis of a nondimensionalized airplane cross-sectional area and i s  general ly  
obtained from supersonic area-rule  concepts. The term B ( t )  represents  a d i s -  
t r i b u t i o n  of nondirnensionalized equivalent area due t o  l i f t  evaluated through 
an in tegra t ion  of t he  l i f t i n g  force  per  un i t  l ength  along the  a i rp lane  longitud- 
i n a l  axis. The e f f ec t ive  nondimensionalized base area &,b can be expressed 
as 

The f i r s t  term of &,b depends on the weight and operating condition of t h e  
airplane;  s ince t h e  physical  a rea  of an e f f i c i e n t  a i rp lane  general ly  approaches 
zero a t  the base,  the term depends primarily on t h e  je t  e x i t  area of t h e  
a i rp lane  engines. 

Ab 

A f'unction F(T),  r e l a t ed  t o  the  body area d i s t r ibu t ion ,  i s  e s s e n t i a l  i n  
t he  method of reference 2. I f  t h e  area d i s t r ibu t ion  due t o  volume used i n  the 
der iva t ions  of reference 2 can be replaced by an e f f e c t i v e  area due t o  volume 
and l i f t ,  t h e  funct ion F(T) can be expressed as 

where t h e  l a t t e r  expression i s  a S t i e l t j e s  i n t eg ra l  which can be used f o r  d i s -  
continuous s lopes if the  L igh th i l l  correction ( r e f .  2) i s  applied near t h e  
point  of d i scont inui ty .  However, a sharp discont inui ty  i n  t h e  forward area 
development i s  undesirable from drag considerations, and the  boundary layer  
tends t o  f a i r  over minor d iscont inui t ies .  For e f f i c i e n t  supersonic a i rp lanes  
the major e f f e c t  of d i scon t inu i t i e s  i s  expected t o  be r e s t r i c t e d  t o  t h e  wake- 
induced pressure f i e l d .  

Once t h e  function F(T) i s  determined from equations ( 3 ) ,  a descr ipt ion 
of t he  e n t i r e  flow f i e l d  about a body of revolution i s  possible  w i t h  t h e  method 
of reference 2. For convenience two zones of influence may be considered: i n  
t h e  near f i e l d  of t h e  body of revolution, body shape ( o r  t he  shape of F(T))  
has  an inf luence on t h e  shape of t h e  pressure s ignature ,  and, i n  t h e  asymptotic 
f a r  f i e l d ,  body shape no longer has an influence on the shape of the  pressure 
s ignature  o r  on the r a t e  of decrease of t h e  shock s t rength  with dis tance.  
Although reference 2 contains a complete descr ipt ion of t he  theory, t h e  
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re la t ionships  per t inent  t o  the  present ana lys i s  a r e  included herein i n  the  
notat ion of t he  present paper. 

'' 

General Theory Expressions f o r  Pressure Signature 

For any e f f ec t ive  area d i s t r i b u t i o n  A, which generates an F(T) funct ion 
wi th  one region of compression F'(-r) > 0 i n  t h e  pos i t i ve  range of F(T) and 
one region of compression i n  the  negative range of 
be characterized by two shocks. Such an F(T) function i s  shown i n  f igure  l ( a ) .  
If it i s  desired t o  loca te  the  shocks a t  some r a d i a l  dis tance from t h e  
body which generated t h e  i l l u s t r a t e d  F(T) function, -rl, -r2, T ~ ,  and 74 
must be determined such t h a t  

F(T) ,  t h e  flow f i e l d  w i l l  

h/2 

Also, t he  following conditions must be m e t  a t  t h e  bow shock: 

and a t  the t a i l  shock: 

I(T4) - I('3) = 3 7 4  - 73)[F(74) + F(73U 

The solut ions of equations (4) and ( 5 )  f o r  the  bow shock and (4)  and (6)  
f o r  the  t a i l  shock a re  equivalent t o  passing l i n e s  of slope 

the  curve f o r  F(7) 
and Area I11 = Area I V .  

as i l l u s t r a t e d  i n  figure l ( a )  such t h a t  Area I = Area I1 

With -rl, -r2, T ~ ,  and 74 defined, t he  pressure s ignature  a t  t h e  

desired h/2 i s  given by 

def ines  t h e  bow shock and T and -r4 define the  t a i l  shock. The T2 3 where 

term Kr i n  equation (7) i s  a r e f l e c t i o n  f ac to r  used i n  current  sonic-boom 

6 
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(a) Effective area distribution function F(r). 

(b) Pressure signature. 

Figure 1.- Representative effective area distribution function and general theory pressure signature. 

analyses which has a value of un i ty  u n t i l  the pressure wave comes i n  contact 
with a r e f l e c t i v e  surface.  
a solut ion of t h e  general theory equations is  i l l u s t r a t e d  i n  f i g u r e  l ( b ) .  

A representative pressure signature obtained from 

If  only the bow shock c h a r a c t e r i s t i c s  are  of i n t e r e s t ,  the  solut ion can be 
wr i t ten  such t h a t  t h e  s t rength,  o r  pressure jump a t  the  bow shock, i s  given by 

\ 2 ~ o w  shock 

where 

and 

The bow shock i s  located a t  a longitudinal pos i t ion  given by 
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A s  T i s  increased i n  t h e  pos i t ive  region of F(T) ,  t h e  bow-shock charac- 
t e r i s t i c s  a re  described a t  g rea t e r  and grea te r  dis tances  from t h e  generating 
body. (See eqs. (8) t o  ( l o ) . )  If one follows t h i s  general  solut ion from t h e  
v i c i n i t y  of t he  generating body outwards, t h e  influence of t he  shape of F(T) 

and hence 4 on and (?) diminishes. F ina l ly  a 

r a d i a l  distance given by 
( p ) b ~ ~  shock bow shock 

i s  reached at which t h e  body shape no longer has an influence on t h e  shape of 
t he  pressure signature.  A t  t h i s  so-called f a r - f i e ld  loca t ion  a t y p i c a l  N-wave 
pressure develops and t h e  general  solut ion i s  replaced by an  approximate asymp- 
t o t i c  expression. I f  F(T) 4 0  a s  T +- r0 ,  t h e  bow shock would reach f a r - f i e l d  
conditions only a t  an i n f i n i t e  r a d i a l  d i s tance  from t h e  body. (See eq. (12) . )  
If F(T) i s  f i n i t e  but discontinuous a t  T = -r0 t h e  r a d i a l  dis tance from t h e  
body required f o r  asymptotic pressure va r i a t ion  can be determined from equa- 
t i o n  (12) with the  use of t he  l a rges t  pos i t i ve  value of F(T0)- 

Asymptotic Expression f o r  Bow-Shock Pressure Rise 

and Pressure Signature 

The asymptotic expression for t h e  bow-shock pressure r i s e  i n  t h e  far f i e l d  
may be determined by the  use of equation (8) a s  

and t h e  asymptotic bow shock i s  located a t  a longi tudinal  pos i t ion  given by 

= To  
Z - ph 

2 

(%)bow shock 
I n  equation (13), i s  dependent on the  body shape o r  t h e  
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lotigitudinal va r i a t ion  of A, only a s  a constant I ( -r0 ) which i s  r e l a t ed  

t o  A,. Also, t he  shock s t rength  v a r i e s  as  (t)-3’4 ir respec t ive  of t he  shape 

of A,. 

I n  the  f a r  f i e l d ,  

and t h e  t a i l  shock i s  located a t  a longi tudinal  pos i t ion  given by 

The pressure v a r i e s  l i n e a r l y  between the  values a t  t h e  bow and t a i l  shocks. 

RESULTS AND DISCUSSION 

Equations ( 8 ) ,  ( 9 ) ,  and (12), which are based on t h e  general  theory of 
reference 2, ind ica te  t h a t  body shape, through i t s  influence on F(T),  has an 
e f f e c t  on t h e  dis tance from the  body a t  which asymptotic pressure conditions 
a r e  e s s e n t i a l l y  a t t a ined .  
i c a l  d i s tance  from the  body t o  t h e  f a r  f i e l d  can be uniquely determined from 
equation (12) .  The general  theory equations ind ica te  a f u r t h e r  influence of 
body shape on the  manner i n  which the  bow-shock pressure- r i se  c h a r a c t e r i s t i c s  
approach an asymptotic f a r - f i e l d  va r i a t ion .  A number of ana ly t i c  equivalent 
bodies of revolut ion a r e  used herein t o  consider the  possible  importance of 
these  e f f e c t s  which have not been considered i n  sonic-boom analyses of super- 
sonic a i rp l anes  a t  normal operating conditions. 

For c e r t a i n  types of a rea  d i s t r i b u t i o n  t h e  theore t -  

Ef fec t  of A, on Approach t o  Asymptotic Far-Field 

Conditions f o r  Pointed Bodies 

With t h e  use of general  theory equations (8) and ( 9 ) ,  t he  bow-shock 

( h y l 4  

pressure- r i se  parameter (%)bow shock 7 

( V i z ,  d(0) = 0 )  represented i n  f igure  2 have been determined a t  a Mach number 
Of 1.414. 
{G- 

for the  s e r i e s  of pointed bodies 
P1/$r 

The calculated general  theory pressure-rise parameter divided by 
f o r  t hese  bodies i s  shown in  f igu re  3 p lo t t ed  against  a dis tance 
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Figure 2- Effective area distribution and effective area distribution function for pointed bodies. 
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Figure 3.- Variation of bow-shock pressure-rise parameter wi th distance parameter for pointed bodies. M = L414. 
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parameter A:,(!). Also shown are the  asymptotic f a r - f i e l d  pressure-r ise  

parameters f o r  each of t he  th ree  shapes. The asymptotic values a re  invariant  
with d is tance  parameter. 

From f igu re  3, t h e  shape of t h e  e f fec t ive  area d i s t r ibu t ion  A, has a 
marked influence on t h e  manner i n  which the bow-shock pressure-r ise  parameters 
approach t h e i r  respect ive asymptotes. Since t h e  e f f ec t ive  area shape shown i n  
f igu re  2(a) has an F(T) d i s t r ibu t ion  which approaches zero as T approaches 
T ~ ,  t he  f a r - f i e l d  solut ion i s  a true asymptote. For the  e f f ec t ive  area shapes 
shown i n  
F(T) a t  
equation 
rise f o r  
pre  s sur e 
shown i n  
shown i n  

The 

f igu res  2(b) and 2( c ) ,  which have discontinuous non-zero values of 

(12) f o r  a specif ied A,,b and body length.  The bow-shock pressure 
the  shape shown i n  f igure  2(c) does not represent t h e  m a x i m u m  over- 
which would be present  i n  the signature because f o r  the shape 
f igu re  2(c)  increases  a s  T increases.  For convenience, t he  shapes 
f igu res  2 and 4 a r e  iden t i f i ed  hereinaf ter  by f igure  number. 

T ~ ,  t he  t h e o r e t i c a l  dis tance t o  the  f a r  f i e l d  can be determined from 

F(T) 

f a c t  t h a t  h/2 and A,,, are f ac to r s  of t h e  abscissa  i n  f igure  3 
i nd ica t e s  t h e  possible  inapp l i cab i l i t y  of the  cur ren t ly  used asymptotic solu- 
t i o n s  i n  t h e  sonic-boom analys is  of a long slender a i rp lane  such as t h e  super- 
sonic t ranspor t .  The curves of f igu re  3 fur ther  suggest t h a t  sonic-boom advan- 
t ages  may accrue i f  t he  e f f e c t i v e  a rea  d i s t r ibu t ion  of an a i rp lane  i s  such t h a t  
nonasymptotic near-f ie ld  pressure-r ise  cha rac t e r i s t i c s  a re  provided a t  normal 
operating conditions.  

Effect  of Ae on Approach t o  Asymptotic Far-Field 

Conditions f o r  Blunt Bodies 

General theory ca lcu la t ions  similar t o  those f o r  t h e  pointed bodies of 
f igu re  2 have been made f o r  t he  series of blunt  bodies (v iz ,  
resented i n  f igure  4. 
ab ly  be  impract ical  from drag considerations, they are of i n t e r e s t  since the  
lower bound asymptote of sonic-boom overpressures i s  obtained from one of these 
shapes (shape 4(a)). This lower bound shape, which was derived i n  reference 3, 
i s  not amenable t o  exact solut ion because o f  the  extreme nose bluntness.  How- 
ever,  a l imi t ing  so lu t ion  can be obtained which ind ica t e s  t h a t  t h e  pos i t ive  
F(T)  pulse i s  located a t  t h e  nose with zero values over t h e  remainder of t h e  
body length  (ref.  3 ) .  
bound asymptotic bow-shock pressure-r ise  parameter of 0 . 5 4 6 .  Since F( T) 

i s  i n f i n i t e  a t  
pressure- r i se  c h a r a c t e r i s t i c s  f o r  t h i s  lower bound shape would e s sen t i a l ly  
reach asymptotic conditions a t  t h e  body. 

&(O) > 0 )  rep- 
Although these  blunt e f f ec t ive  area shapes would prob- 

An in tegra t ion  of the l imi t ing  so lu t ion  y i e lds  the  lower 

T = T ~ ,  equation (12) would ind ica te  t h a t  t h e  bow-shock 

The va r i a t ion  with dis tance of the bow-shock pressure-r ise  parameter 
divided by /= of t h e  b lunt  bodies of f igure 4 i s  shown i n  f igure  5 .  A s  

11 



Lower bound o s y m p t o t e  

A 

Ae,b e l?L 25 0 

0 2 4 6 8 I O  12 

t 

2 c  

I .c 

-1.c 

-2 c 

T 

_.._. 
c 

0 2 .4 .6 .8 1.0 1.2 
t 

0 .2 .4 .6 .8 1.0 1.2 

r 

(b) Ae = A (2t - t3l2). 
e. b 

/-- 
/ 

/ 
/ 

/ 
/ 

/ 

0 2 4 6 8 1.0 1.2 
t 

0 .2 .4 .6 .8 1.0 1.2 

7 

Figure 4.- Effective area distributions and effective area distribution function for blunt bodies. 
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Figure 5.- Variation of bow-shock pressure-rise parmeter with distance parameter A2 h for blunt bodies. M = 1.414 e,b 0 1 
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might be expected, shapes 4(b) and 4(c)  have higher asymptotic pressure-r ise  
levels  than does the  lower bound shape 4 a ) .  
f a r - f i e l d  condition i s  reached, shapes 4 I b) and 4(c) have subs t an t i a l ly  lower 
bow-shock pressures  than would be predicted from lower-bound considerations.  
A s  f o r  t he  pointed bodies, f igure  5 indicates  t h a t  t h e  shape of 
marked influence on t h e  manner i n  which the bow-shock pressure-r ise  approaches 
an asymptotic f a r - f i e ld  var ia t ion .  

However, a t  dis tances  before t h e  

A, has a 

08 

06 

04 

02 

0 

Dimensional Consideration of Possible Nonasymptotic E f fec t s  

The r e s u l t s  of f i gu res  3 and 5 suggest t h a t  f o r  c r i t i c a l  t ransonic  accel-  
e r a t ion  conditions,  a long slender airplane such as t h e  supersonic t ranspor t  
might generate a nonasymptotic near-f ie ld  pressure s ignature  a t  t he  ground. If 
this i s  so then t h e  far-field expression (eq. (13)) normally used i n  sonic-boom 
est imates  could overpredict  t h e  sonic-boom ground overpressures f o r  t h i s  c r i t -  
i c a l  condition. I n  order t o  pursue this poss ib i l i t y ,  representat ive dimensions 
must be applied t o  the  curves of f igu res  3 and 5.  A t y p i c a l  l a rge  supersonic 
t ranspor t  configuration with 2 = 230 f e e t  and W = 450 000 pounds i n  t r an -  
sonic f l ight ( M  = 1.414) a t  an a l t i t u d e  of 44,000 feet  would have an e f f ec t ive  
nondimensionalized base area &,b 
r a t i o  of length  t o  base diameter of 8.86. 

of 0.01 corresponding t o  a body with a 

- 

I -  - - - -  ------ 
/ Simulated Normal 

tunnel operating I 

alt i tude Shope a l t i tude  
- 

- 

I '  
I /' 
I' , - 

, , 

I I I I 

With these  representat ive values of and 2 ,  some of t h e  curves of 
f i g u r e s  3 and 5 have been redrawn f o r  the assumed operating condition. The 

assumed s i z e  and f l i g h t  conditions, i s  shown as a function of h i n  f igure  6 .  

Figure 6- Variation of bow-shock pressure-rise parameter with h for typical supersonic transport dimensions and operating condition. 
M = 1.414; A = aoi; I = BO ft; w = 450 000 ih 

e, b 



4 
The f igure  ind ica tes  t h a t  a i rp lanes  which simulate e f f ec t ive  area shapes 2 (a ) ,  
2( c ) ,  and 4(c)  would indeed be expected t o  produce a nonasymptotic pressure 
f i e l d  a t  the assumed normal operating a l t i t u d e  of 44 000 f e e t .  
t he  assumed conditions, t h e  f a r - f i e l d  asymptotic va r i a t ion  of bow-shock 
pressure-rise parameter f o r  these th ree  shapes would not occur u n t i l  from 
220 000 t o  several  mi l l ion  f e e t  from t h e  body. I n  cont ras t ,  note the  bow-shock 
pressures f o r  t h e  tunnel  simulated a l t i t u d e  of 4600 f e e t  which a re  indicated i n  
f igure  6. 
present f a c i l i t i e s  with a 2-inch model of a t ranspor t  configuration. 

I n  f a c t ,  f o r  

This a l t i t u d e  i s  near t he  maximum leve l  which can be simulated i n  

Experimental Invest igat ion of General Theory 

The possible sonic-boom advantages indicated by t h e  general  theory r e s u l t s  
of f igure  6 have l e d  t o  an experimental inves t iga t ion  t o  check t h e  v a l i d i t y  of 
t h e  theory. 
flow f i e l d  of bodies of revolution representing t h e  shapes and supersonic 
t ranspor t  f l i g h t  condition indicated i n  f igure  6 .  The pressure data  were 
obtained a t  a r a t i o  of r a d i a l  dis tance t o  body length of 20 which corresponds 
t o  a simulated a l t i t u d e  of 4600 f e e t  f o r  t he  assumed a i rp lane  length  of 
230 f e e t .  The measured pressure s ignatures  a r e  compared i n  f igure  7 with those 
obtained from a rigorous appl icat ion of t h e  theo re t i ca l  methods of reference 2. 
From t h i s  f igure  it can be seen t h a t  t he  general  theory provides an extremely 
good representation of t he  f i e l d  pressures f o r  a l l  body shapes considered. 
Although the asymptotic solut ion i s  not appl icable  f o r  t h i s  obvious near-f ie ld  
condition, note t h a t  t he  area under the  pos i t ive  pressure region of t h e  general  
theory and asymptotic s ignatures  a re  e s s e n t i a l l y  the  same. Since t h i s  area i s  
r e l a t ed  t o  the  pos i t ive  impulse which would be  produced a t  an observation point  
by the  pressure wave it i s  an important property damage consideration. On t h i s  
bas i s ,  t he  lower bound asymptotic shape (shape 4 (a ) )  would produce t h e  lowest 
pos i t ive  impulse f o r  a given operating condition. 

Pressure measurements were made a t  a Mach number of 1.414 i n  t h e  

Calculated Ground Overpressures From F l igh t  

a t  Normal Operating Alt i tude 

From the comparisons i n  f igure  7, t h e  general  theory of reference 2 appears 
t o  be val id  a t  t h e  simulated near-f ie ld  wind-tunnel a l t i t u d e  of 4600 feet .  
would be ant ic ipated t h a t  t h e  general  theory i s  a l s o  appl icable  f o r  t h e  non- 
asymptotic conditions indicated i n  f i g u r e  6 a t  t h e  normal operating a l t i t u d e  of 
44 000 fee t .  Furthermore, t he  asymptotic solut ion,  which i s  inappl icable  a t  
t h e  simulated tunnel a l t i t u d e  of 4600 f e e t ,  would be expected t o  provide a poor 
approximation of t h e  sonic-boom ground overpressures f o r  t he  nonasymptotic s i t -  
ua t ion  represented by the  assumed f l i g h t  condition. 

It 

The theore t ica l  development of reference 2 i s  based on a uniform atmos- 
phere. I n  order t o  determine t h e  sonic-boom ground overpressures from equa- 
t i o n s  ( 7 ) ,  ( 8 ) ,  and (13), it i s  f i r s t  necessary t o  def ine a reference pressure 
which accounts f o r  t h e  va r i a t ion  of atmospheric pressure and temperature between 
t h e  airplane and the  ground. The reference pressure which i s  t h e  current  b a s i s  



. 

.OE 

.04 

C 

-.04 

-.OE 

.08 

-.04 

-.08 

0 .8 .6 .2 .4 

(a) Body shape 2(aL 

A e  

I .o 1.2 1.4 

' '\ t I -Asymptotic solution 

I I I I I I I 1 

0 .2 .4 .6 .8 1.0 1.2 I .4 

Ib) Body shape 2k). 

Figure 7.- Comparison of measured pressure signature with theory for body of revolution scaled to represent typical 

supersonic transport operating condition. M = L414; = 20. 



Lower bound asymptote 

.08 

04 

0 

-.04 

- .oa 

08 

04 

0 

I 
00, 

\ -3=- 
\ General so lu t ion 

Experiment 

I I I I I I I I 
0 .2 .4 .6 .8 1.0 1.2 1.4 

(c) Body shape 4(a). 

A e  

I\ 
I \  

t 

General solution I :Asymptotic solution 

-.04 

- .08 
0 

Experiment 

.2 .4 .6 

A X  
I 
- 

(dl Body shape 4k). 

Figure 7.- Concluded 

~~-I I I 1 
.8 1.0 1.2 I .4 

16 



. 
f o r  most sonic-boom est imates  i s  
f l i g h t  a l t i t u d e  and t h e  pressure on the  ground. With the  use of this geometric 
mean reference pressure and an establ ished r e f l ec t ion  f ac to r ,  
nonasymptotic near - f ie ld  ground overpressures expected from the  body shapes and 
f l i g h t  condition of f igu re  6 may be determined. Representative pressure s ig-  
na tures  of t h i s  type,  f o r  shapes 2(a) and 2(b),  a r e  presented i n  f igu re  8 and 
compared with those which would be obtained from asymptotic theory and from the  
asymptotic lower bound shape ( shape 4 ( a ) ) .  

,/G, the geometric mean of t h e  pressure a t  

Kr = 1.9, the  

2-  

I ’  

- Anticipoted near field signoture 
- - - - - - - Asymptotic solution , 

Ground 
overpressure, 

A p ,  Ib /sq f t  

Ground 
overpressure, 

AD,  Ib /sq f t  

0 

-- Lower bound asymptote (shape 4(0)) 

A 

Figure &- Comparison of calculated near-field ground overpressures with asympiotic predictions. M = L414; h = 44 000ft; 
W = 450 OOO Ib: I = 230 ft 

The ca lcu la ted  r e s u l t s  presented i n  f igure 8 indica te  d i s t i n c t  a l l e v i a t i o n  
of t h e  sonic boom f o r  e f f e c t i v e  equivalent body shapes t h a t  produce nonasymp- 
t o t i c  ground pressure c h a r a c t e r i s t i c s  a t  normal operating a l t i t u d e s .  The near- 
f i e l d  sonic-boom overpressures produced by these shapes a r e  considerably lower 
than would be expected from asymptotic considerations and indeed a r e  somewhat 
lower than the  lower bound of asymptotic overpressures. 

The quest ion a s  t o  whether t he  ideal ized e f f e c t i v e  area d i s t r i b u t i o n s  used 
here in  can be dupl icated i n  a p r a c t i c a l  a i rp lane  configuration can not be 
answered a t  t h i s  time. However, t he  present r e s u l t s  ind ica te  t h a t ,  f o r  ce r t a in  
normal operat ing conditions,  a la rge  airplane such a s  the  supersonic t ranspor t  
has t h e  dimensions which tend t o  place it i n  a f l i g h t  region where the  cur- 
r e n t l y  used asymptotic sonic-boom theory does not apply. The nonasymptotic 
e f f e c t s  which have been considered suggest t h a t  sonic-boom suppression through 
a design approach t o  an a i rp lane  equivalent body shape which generates near- 
f i e l d  pressure c h a r a c t e r i s t i c s  a t  grea t  dis tances  i s  a possible  so lu t ion  t o  the  
c r i t i c a l  sonic-boom problem a t  t ransonic  accelerat ion conditions.  



CONCLUDING REMARKS 

The study of a number of equivalent bodies representing a la rge  a i rp lane  
a t  c r i t i c a l  t ransonic  f l i g h t  conditions ind ica tes  t he  possible  inapp l i cab i l i t y  
of t h e  asymptotic f a r - f i e l d  theory used i n  current  sonic-boom analyses.  
these  normal operating conditions t h e  pressure f i e l d  of a la rge  airplane, such 
as t h e  supersonic t ranspor t ,  tends t o  exhib i t  important $onasymptotic near - f ie ld  
e f f e c t s h i c h  must be considered with t h e  use of general  theory.  
shape and magnitude of t h e  near-f ie ld  pressure signature i s  dependent on a i r -  
plane equivalent body shape, sonic-boom suppression through a design approach 
t o  a more ideal ized near-f ie ld  shape i s  suggested. The r e s u l t s  ind ica te  t h a t  
i f  cer ta in  e f f ec t ive  area d i s t r ibu t ions  can be achieved by r e a l  a i rp lanes ,  
sonic-boom overpressures much lower than those predicted by current asymptotic 
methods would be possible a t  c r i t i c a l  t ransonic  accelerat ion conditions.  

A t  

Since the  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, V a . ,  May 7, 1-96?. 
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